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Systematic Computation of the Modal Spectrum
of Boxed Microstrip, Finline, and Coplanar
Waveguides Via an Efficient SDA
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Abstract—This work reports an efficient and systematic proce-
dure to obtain the complete modal spectrum of multilayer boxed
planar lines. The complex propagation constants are obtained by
computing the zeros of a properly built analytic complex function.
This function is the product of two factors. One of them is the
determinant function provided by the spectral domain—Galerkin
analysis (SDA). The other factor is a function which cancels out
the poles of the former factor without introducing additional
poles nor zeros. The elimination of the poles overcomes numer-
ical difficulties usually found in the zero searching process. In
addition, powerful zero—searching integral techniques can be
applied without problems. The numerical aspects involved in
the computation of the spectral series are considered to speed
up the computations. The features of an arbitrary number of
propagating, evanescent, backward or complex modes of three
important boxed structures (microstrip, finline, and coplanar
waveguide) can be systematically studied with our method.

I. INTRODUCTION

HE ANALYSIS OF discontinuities between boxed planar

lines has been carried out by means of a wide variety
of techniques. Among them, modal solution procedures are
frequently chosen owing to a number of advantageous features
discussed in the literature on this topic, e.g.. [1]-[5]. In this
context, microstrip, finline or CPW normal modes are likely
the best choice as the basis for the modal expansion [6].
Nevertheless, tens of modes may be required to analyze a
typical discontinuity [3], [5]. Consequently, it is convenient
to develop a method to compute the propagation constants of
an eventually large number of modes. The method should be
reliable (avoiding missing of solutions), accurate (preserving
mode orthogonality) and quick (saving CPU time). This paper
tries to give a response to those requirements within the frame
of the SDA.

The techniques used to analyze uniform planar lines usually
lead to an homogencous matrix equation that only can be
solved for certain particular values (eigenvalues) of a parame-
ter (the unknown propagation constant). These eigenvalues are
complex solutions of a nonlinear equation which is obtained
enforcing the determinant of the system matrix to vanish.
Accuracy and reliability mainly depend on two factors: (1)
accurate evaluation of the system matrix and (2) use of a
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Fig. 1. Cross-section of the boxed lines in layered medium studied 1n this

paper: (a) microstrip. (b) finline, and (c) coplanar waveguide (CPW). Dashed
lie stands for electric/magnetic wall. Amsotropic materials can be considered.

suitable method to solve the nonlinear dispersion equation.
The numerical solution of this equation is difficult due to
the existence of steep gradients and poles (often very close
to the desired solution). In spite of its importance, only
a few attempts of solving this problem can be found in
the literature. In this way, the mode spectrum of finline
[7], [8] and microstrip [4], [9] have been computed using
the singular integral equation technique (SIE); the transverse
resonance diffraction (TRD) method is applied in [10] to the
unilateral finline. Particular interest deserves the space domain
formulation reported in [11] to analyze a lossless single layer
microstrip line. The zero-search problem is emphasized in
those papers and treated using some a priori knowledge about
pole location. Unfortunately, this is only feasible for particular
situations. More recently, the singular value decomposition
(SVD) method has been proposed in [12]—and used for the
analysis of the quasi-TEM modes of multistrip structures in
[13]—as a useful technique to relax the root location problem.
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This paper offers an alternative method presenting some
advantages over the above mentioned procedures. We propose
a general technique (a first step on which was reported in [14])
to deal with the computation of the modal spectrum of the
generalized boxed planar lines in Fig. 1. Our method makes
use of the well-established SDA formulation. Some authors
sustain that SDA is suitable for the first few modes but not
for higher order modes (e.g.. [2], [3], [7], [81). We have found
that the possible drawbacks of the SDA are likely related to
numerical inaccuracy when a relatively high number of basis
functions is required and the lack of a suitable zero searching
procedure.

We have developed a technique that improves accuracy and
numerical stability, although the stress is here put on the
development of a systematic strategy to find all the desired
modes avoiding missing of solutions. This strategy is based
on the cancellation of the poles of the characteristic dispersion
equation. Thus, the dispersion relation is given in terms of the
zeros of an analytic complex function (i.e., a function fulfilling
the Cauchy-Riemman conditions). Note that, even though
the method in [12] incorporates the important advantage of
working with a function having no poles, that function is not
analytic. On the contrary, our proposal takes advantage of
the analyticity in the zero searching task. On the other hand,
since our technique requires (such as many other methods) to
evaluate the dispersion function many times, special attention
has been paid to avoid redundant computation of the spectral
series (most of the computing effort is concentrated in the
first evaluation of the Galerkin matrix). This reduction of
computation work and the aforementioned analyticity of the
dispersion equation have been combined to implement a
reliable, fast and systematic computer code for the analysis
of the modal spectrum of the lines in Fig. 1.

II. PROBLEM STATEMENT

The analysis of the structures in Fig. | is conveniently
carried out by means of the SDA. The spectral dyadic Green’s
function (SDGF), G(am,v,w) — @, is the Fourier variable,
~v = f3 — ja, the unknown complex propagation constant and
w the angular frequency —, may be computed using the so-
called EBM method [15], [16] (EBM allows us to deal with a
complex linear layered medium). Once the SDGF is known, an
integral equation is written either for the strip surface current
(microstrip case) or for the slot electric field (finline and CPW
cases). This spectral integral equation is solved via Galerkin’s
method, which leads to an homogeneous equations system. Its
non trivial solution condition

detfA(y,w)] = 0 (1)

stands for the characteristic equation whose complex roots
are the desired propagation constants (v;;¢ = 1,-+,00).
Two points concerning the solution of (1) should be now
considered:

A. Proper Compultation of [A(y,w)]

Computational efficiency is essential at this step of the
analysis because it determines CPU time and accuracy. First

of all we have to use adequate basis functions. We use first
and second kind Chebyshev polynomials weighted with the
Meixner edge condition [15], since this set of functions is
specially suitable for the analysis of planar lines. Unfortu-
nately, the spread spectrum of these functions yields very
slowly convergent series. A huge number of Fourier terms
could have to be retained to avoid serious truncation errors
[17]. Moreover, the truncated spectral representation does
not account for the edge singularity; therefore, the power
of the weighted basis functions set can be only exploited
if a suitable summation technique is provided. The problem
becomes more noticeable for high order modes and very
narrow strips/slots [18]. In this paper we use acceleration
techniques that substantially relax all these inconveniences.
Our technique has the additional virtue of avoiding redundant
computations in the zero search process. A brief outline of the
method can be found in the Appendix.

B. Suitable Scheme for Complex Roots Searching

The solution of (1) implies to seek for the zeros of a com-
plex function of complex variable F'(v,w) = det[A(v,w)],
for each fixed frequency value. F'(,w) is not analytic but
meromorphic. Its poles arise either from the poles of the
SDGF (microstrip), or from the poles of its inverse (finline
and CPW). The presence of poles always makes difficult the
zero searching task. Poles and zeros may be so close each
other that numerical difficulties arise even if pole locations are
known in advance, as in [11]. Therefore, we have developed
an approach completely different from the one used in [7],
[10]-[12]. Our strategy consists in obtaining the characteristic
function of the nonstandard eigenvalue problem (1) in the
form of a complex function which is analytic in the traced
region. This function has smooth behavior so making easy the
application of differential zero-searching algorithms (Muller
or Davidenko’s methods). However, we have exploited the
advantages arising from the analyticity of that function since
systematic integral methods based on well-known complex
variable theorems can be then applied. We have implemented
an improved version of the Delves—Lynnes [19] technique to
obtain the number and location of all the zeros within a given
region. The knowledge of the number of roots is useful so as to
explore the complex plane systematically, so avoiding missing
of solutions and redundancy. Although this technique gives
very accurate results, additional accuracy is obtained—without
increasing too much the CPU time—if these results are used
as initial guesses of an iterative Muller algorithm.

TII. DISPERSION FUNCTION AS AN
ANALYTIC COMPLEX FUNCTION

We have already discussed the advisability of formulating
the dispersion problem in terms of the zeros of an analytic
complex function. In this section we explain how to built this
function. Let us begin with the microstrip configuration. In
this case, (1) has the same poles than the SDGF. They are
the propagation constants of the modes supported by the inho-
mogeneous waveguide remaining when the strip is removed,
namely, the background waveguide (see Fig. 2(a)): only when
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the SDGF has a pole we can have finite nonvanishing field in
the absence of printed current. Although direct search for these
poles is possible [11], this task could present difficulties when
applied to a complex multilayer structure or when poles and
zeros are in close proximity. So we have followed a different
method that overcomes numerical problems. In [20] it was
reported a procedure to compute the propagation constants
of a laterally open waveguide with a bianisotropic layered
medium in terms of the zeros of an unbounded analytic
complex function. We follow here the guidelines contained
in [20] but adapting the maths to account for the metallic
enclosure 50 as to get an analytic characteristic equation for the
eigenmodes of the background waveguide. Let Eg(e,) and
J k(an) be the Fourier transforms of the tangential electric
field and surface current at the kth interface (a dependence
on the Fourier variable «,, will be assumed henceforth for all
the physical quantities). Using notation and formulas in [15]
and [16] we can write two useful relationships between those
quantities at the top, N, and bottom, 0, interfaces (see Fig. 1)

Ey = [Ty (7, w)] -Jo; (y=0 ew.) (2a)
Ey = [[o(y,w)] - Eo; (y =0 mw.) (2b)
(e.w. = electric wall; m.w. = magnetic wall), where
[Tn] = swpo[Aln1 - glor; (y=0ew)  (3a)
1 _
o] = —5[Alva - [} - [eloo; (=0 mw) (b

and
Alva = (DN T g oy v} @
=1

The 2 x 2 matrix functions [L], in (4) are computed using the
following recurrence algorithm:

L]k = [glrs — [8lrk—1 [LIgY - [glr—14 (5)

k=2.--,N-1
which has to be initialized with the expressions

[L]: = [gli; (=0 ew.) (62)

L] = gl — 2[glio - [glog - [gloa: (¥ =0 mw.). (6b)

The 2 X 2 matrix functions [g], ; in (3)~(6) are known in
closed form and are given in [15] and [16]. It should be
emphasized that the 2 x 2 [I',] matrices in (2) and the SDGF
are simultaneously computed. Therefore, the evaluation of
[I',] requires negligible additional computation.

Now, the presence of the upper conducting plate is taken
into account by imposing Ey = 0. Then, the nontrivial
solution condition for (2a) or (2b)

det[T,(v,w)] =0 (n=0,1,2,...) (7

gives the propagation constants of the modes in the inhomoge-
neous background waveguide. For our purpose, an important
feature of (7) is that det[I', (v, w)] does not have any poles

by B
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Fig. 2. Structures whose propagation constants are the poles of the dispersion
characteristic equation (a) for the muicrostrip line and (b) for finline and CPW.

in the v complex plane [20]. We will take advantage of
this property later but, before going on, let us discuss the
finline/CPW case. For any of these structures, the kernel of
the integral equation for the slot electric field is the inverse of
the SDGF, i.e., [G(apn,7,w)]~!. The singularities in (1) now
arise from the modes corresponding to the two waveguides
resulting from the substitution of the printed Mth interface by
a continuous conducting plate (see Fig. 2(b)). We can write
for the lower (L) and upper (U) waveguides

(8a)
(8b)

EM = [I‘ﬁ] -jo or EM = [Fﬁ] . E()
Ey=[TY]-Ju

where [T'%] and [T'Y] are obtained by following the same steps
reported for the microstrip case. If we redefine

[Caly,w)] = [T7]- 7]

condition (7) still determines the propagation constants in this
case.

The doubly infinite set of solutions of (7) is also the set of
poles of the determinant function (1). In other words, we have
built up a family of functions

{Fa(y.w) = det [Tn(y, )]} 2010,

whose zeros are the poles of F'(y,w) = det[A(y,w)]. These
functions can be now used to eliminate the poles of F(vy,w)
without introducing additional poles or roots. Thus, the dis-
persion relation for the boxed transmission line—which was
initially given in terms of the meromorphic expression (1)—is
now more conveniently expressed by means of the following
analytic characteristic equation:

det [A(v,w)] - [ Pu(rw)=0 ©)
n=0

where, as will be shown later, just a few factors of the infinite
product are required in practice.

IV. SYSTEMATIC SEARCH FOR THE ZERO’S

Equation (9) turns out to be a rather formal expression, since
infinite factors should be retained so as to built an analytic
function in the entire complex plane (except at infinity).
However, (9) has to be analytic only in that region of the
complex plane to be traced by the zero-searching algorithm.
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Therefore only a few values of n are usually required to
generate a function

H(v,w) = det A(% 10)

N,
H ,w)
which is analytic in the region of interest. N, in (10) is chosen
in such a way that, for a given operation frequency, w, and box
width, a, all the poles in the search region are removed (i.e.,
|32 < (N,7/a)? — €.k2, where ¢, stands for the modulus of
the highest relative dielectric constant [7]).

Since H(v,w) is analytic in the working region, R, of the
complex plane, the integral method refereed as C) in [19]
can be used to search for its zeros. We have chosen this
method instead of B) in [19] because it has been found that
the numerical evaluation of the derivative of H(v,w) yields
much better performance than the scheme proposed in B).
This technique allows systematic exploration of the region
" R in order to detect the number of zeros in it. We have
found this method better than other alternatives, specially for
regions with several and/or very close roots. Complex plane
integrations are carried out along circular paths by means of
high order Gauss-Legendre quadratures (2040 points). This
means that H(vy,w) has to be evaluated many times before
attaining the solution. Nevertheless, since several zeros may
be computed with each set of values of H(y,w), the total
number of evaluations of this function might be even smaller
than those required when iterative methods are used. Thus,
with similar computational effort, one gets more reliability and
systematicity in the evaluation of the propagation constants.
In addition, thanks to the use of the asymptotic techniques
commented in the Appendix, the main part of the numerical
effort is concentrated in the first evaluation of H (v, w): further
evaluations do not increase too much the overall CPU time.

V. DISCUSSION AND RESULTS

The theory reported in previous sections is the basis for
a set of computer Fortran codes that analyze the eigenmode
spectrum of the structures in Fig. 1. (they include a variety
of versions of the microstrip, finline, and CPW, including
symmetrically coupled geometries and anisotropic uni- and
biaxial substrates). Several aspects of the convergence and
general performance of the technique have been exhaustively
investigated (some comments about this are in the Appendix).
However, in this paper we are more interested in posing and
solving an adequate dispersion equation than in the numerical
details involved in the generation of the Galerkin matrix
(which are left for a next paper), although it is obvious that
the latter problem had to be properly solved before going on.
We want only to say than a highly accurate and efficient code
has been developed which is able to deal with many basis
functions while keeping numerical stability.

In Fig. 3 we have plotted the standard meromorphic char-
acteristic function in (1), F(-,w), and the modified analytic
characteristic function in (10), H{~y,w) for a range of values

f (B/ko)?. For simplicity, we have restricted the picture to
the real axis (where the functions are real). Nevertheless, the
conclusions obtained from its examination also apply to the
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Fig. 3. Typical plots of F(v,w) (meromorphic), H(7y,w) (analytic) dis-
persion functions. These plots correspond to a centered boxed microstrip on
isotropic substrate (¢, = 8.875) having the following dimensions: A = 1.27
mm, ¢ = b = 12.7 mm, and Freq. = 28 GHZ (this structure has been
analyzed in [11]).

complex case. Fig. 3 shows how both functions have the
same zeros, but F'(y,w) has also poles, some of which are
extremely close to the zeros (they could even match). This
latter fact seriously complicates—or even precludes—the root
identification with conventional methods, whereas does not
affect our formulation.

Our results have been checked against many published data

- computed by means of SDA and other techniques. We have

found excellent agreement with most of these results within the
accuracy of usual graphical representations. However, we have
found that missing of modes is very common. For instance, in
Fig. 4 we plot the propagating and a few evanescent modes
of a unilateral finline. Modes having odd (F-modes) and
even (M-modes) symmetry with respect to the middle plane
normal to the fin interface have been separated. The figure
shows our results and results from [2] and [8]. This figure is
interesting because the authors in [8] express an opinion about
the suitability of the SDA to account for higher order modes:
although SDA is a useful and well-founded method to deal
with planar structures, it is not adequate for reliable and quick
computation of higher order modes; SIE technique would
be a better alternative. This opinion has been sustained by
several authors elsewhere [2], [3], {7], [8]. This conclusion is
supported in [8] by comparing SIE data with the results in [2]
(SDA) for a finline structure. Following these authors, missing
of solutions and relatively high computational cost would be
drawbacks associated to SDA. However, Fig. 4 clearly shows
that we find all the modes reported in [8] and a few more not
reported in that paper (including one complex M -type mode).
In addition, the use of the asymptotic techniques commented
in the Appendix makes the SDA a very efficient method from
the perspective of computational cost (of the same order than
the very efficient SIE technique). An illustrative comparison
has been carried out against the numerical values reported
by Omar et al. [7] (SIE) for a large number of Z-modes
of a unilateral finline. Table T shows our data and the data
in that paper. Apart from excellent agreement, it can be
seen that we find three modes not reported in [7]. The lost
modes are some of those having propagation constants very
close to waveguide modes (singularities in the conventional
formulation), as shown at the bottom of Table I. This closeness
is likely the reason for missing of solutions in [7] (since the
analytical/numerical analysis seems to be very careful). This
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Fig. -4. Dispersion curves of several modes of a unilateral finline in
WR-28 waveguide (3 for propagating modes and « for evanescent ones).
er1 =¢€pg = 1; b1 = hg = 3.429 mm; ¢,2 = 2.22; ho = 0.254 mm; w =
1 mm. (a) E-modes, i.e., modes having an electric wall in the middle plane;
(b) M-modes, i.e., those having a magnetic wall. Solid lines: our results;
symbols: data in [2] and [8].

HO, F &
(S—
]

; O zeros |
| X poles
I
i

0 f S Vi '
- i

—H® ’i

—F @ g

I

i

1 3L
185 190 195 2235
’ Y
Fig. 5. Plot of F(vy) (gray line) and H(7y) (black line) for the structure
whose modes are given in Table I. Even and odd symmetries with respect to
the middle plane of each solution is noted.
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conclusion is confirmed in Fig. 5. This figure shows both the
meromorphic and the analytic dispersion functions for the case
considered in Table I: Numerical problems associated to the
use of the meromorphic function are clearly expected.

We have also made similar comparisons for the microstrip
line analyzed in [4] with SIE. Some numerical data reported in
that paper are compared with our data in Table II. Once again
agreement is very good, but we find some modes not reported
in [4] at 20 GHz. Fig. 6 shows the dispersion behavior of
the modes in Table II. Circles correspond to the propagation
constants not reported in [4]: It is clear that they are not
spurious solutions. In our opinion, Tables I and II and Figs.
4-6 illustrate that, if properly implemented, SDA is a very

TABLE 1
PrROPAGATION CONSTANTS OF THE E-MODES
OF THE UNILATERAL FINLINE STUDED IN [1]

Bl 1 2 3 4 5 6 7

(a)] 0.6824 |-70.6063]-70.7444-;1 5953 |-j1.6487|;1.6798|j1.7468
(b)] 0.6820 |-j0.6067-70.7448 |-51.5955 |-;1.6489|-71.6800|-;1.7440
8] 8(% 9 100 ] 11 12 13 14

(2)] -71.888 |- 1.9918| -;2.466 |-;2.4746 |-;2.5486|-;2.7066 |33.0732
(b)] —— |-j1.9922] —— |-j2.4747[-;2.5491 |-32.7070|-73.0735
8] 15 J16(% | 17 18 19 20 | 21 (%
(2)]-73.1135]-j3.2064|-73.2370 |-j3.3646 |-;3.4763 | -3.4967 | -j3.5061
{b)]-73.1136|-j3.2065 |-73.2372 |-;3.3648 |-;3.4763 - 3.4969
8] 22 23 24 | 25(% | 26 27 28

(3)]-3.6056 |-73.6641|-;3.8124 |-j3.8786-;3.0307 | 3.9654 |;4.0196
(b)[-73.6057-73.6648|-;3.8127|-73.8787|-;3.9308|-;3.96568 |-;4.0196
Bl 29 30 31 kD) 33

(a)[-74-0760]-4.2311 [-;4.3468 |-j4.3637 |-;4.4325
{b)|-74.0770]-j4.2314 | -4 3475 |-;4.3637 |- j4.4326

Finline (*)|-71.888412(-72.466629[-j3.206430-53.596131|-73.878616
Waveguide|-71.888413 |-;2.466633 (-53.206437 |-73.596134 |-;3.878553
n=2 n=2 n=2 n=4 n=2

WR-28 Waveguide: €1 = €,3 = 1; b1 = hz = 3.429 mm; €0 = 2.22; hy =
0.254 mm; w = 0.2 mm; frequency = 30 GHz. (a) Our results. (b) Results in [1]. (*)
Propagation constants very close to waveguide modes (see also Fig. 5) such as shown in
the bottom part of the table (n is the order of the spatial harmonic in (7)).

(mm’)

0.8 = Num. results in [4]
1.2 — ‘ T : : , : ‘ i
0 5 10 15 20
Freq (GHz)

Fig. 6. Dispersion curves for the boxed microstrip (w = 0.953 mm) whose
first few modes (at 10 and 20 GHz) are given in Table II. Circles represent
modes at 20 GHz not reported in [4] (one evanescent mode and one complex.
mode).

powerful tool for the analysis of planar structures also when
very high order modes are traced. More examples and an
exhaustive study of the performance of our formulation—in
contrast with the conventional one—for a wide range of
situations (with particular emphasis on the identification of
complex modes) can be found in [21].

We would like to finish this section with an example of CPW
structure. We have chosen one of the multilayer configurations
proposed by Liu and Itoh in [22] to avoid leakage in conductor
backed coplanar waveguides. Fig. 7 shows the mode spectrum
for that structure when enclosed in a rectangular waveguide.

VI. CONCLUSION

In this paper we have proposed a technique to overcome
some difficulties arising when the conventional SDA is used
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TABLE II
PROPAGATION CONSTANTS, /3, OF A BOXED MICROSTRIP [4]

Frequency = 10 GHz

W = 0.953 mm W = 4572 mm
B (mm~1) B (mm~1)
m @ 0 @ ®
1 0.2885 02884 03023 03021
2 -j0.2484 -j0.2483 -70.2470 -70.2469
3 -70.5547 -30.5547 -50.5508 -70.5508
4 -j0.5887 -;0.5886 -70.6027 -70.6027
5 -709657 -509652 -50 9645 -50.9640
6 -j10208 -310209 -509773 -509773
7 F 000450 F 000449 -j1 0733 -51.0731
8 ¥ ;1.0852 = 71.0849 -;1.1027 -;1.1023
9 -;1.1078 -;1.1075 -;11237 -51.1236
Frequency = 20 GHz
W =0.953 mm W = 4572 mm
8 (mm-1) 8 (mm-1)

I O MR O N O B O)
1 0.5828 05825 0.6136 0.6132
2 02781 0.2778 0.2754 0.2751
3 -304126 -;04127 -j04033 -;0 4032
4 j04557 -j04558 -j0.4801 -70.4802
5 .j08884 -0 8880 -j0 8627 -;0.8626
6 -70.9512 —  -j08989 —
7 F0.00915 —— -;0.9946 —
8 ¥, 10156 — -y10391 —

9 -71.0456 -1 0450 -51.0631 -;j10631

Dimensions: ¢ = 9.52 mm; hy = 0635 mm; €,3 = 2.32; hy = 5715 mm; €,5 =
1 (a) Our results. (b) Results 1n [4] Modes 7 and 8 for w = 0953 mm are the real (7)
and imaginary (8) parts of a pair of complex modes.

to calculate the propagations constants of higher order modes
of planar transmission lines. The limitation of the SDA to
the computation of the first few modes has been removed by
means of two concurrent improvements: (1) drastic enhance-
ment of the numerical performance of SDA through a suitable
preprocessing of the spectral series and (2) formulation of
the dispersion equation in terms of an analytic complex
characteristic function. The final result is a set of quick,
accurate and reliable computer codes to obtain the complete
modal spectrum of the structures shown in Fig. 1. These
programs are potentially useful for the modal analysis of
discontinuities in those structures.

APPENDIX

A. Numerical Treatment of the Galerkin Matrix

Each entry of the SDA Galerkin’s matrix, [A(y,w)], is an
infinite, slowly convergent series involving the product of the
Fourier transforms of two basis functions and the appropriate
element of the SDGF. Drastic acceleration is obtained by
extracting out and analytically adding their asymptotic limit
behavior [23]. With our choice of basis functions all the
elements of [A] have the same asymptotic functional limit,
A2 | so we only have to deal with series of the following

2,9
type:
s — sin(c n as
Ay = E_l Jp(an)Jy(an) {COSEC n)) }-7: (n,w,7)

(AD
where F25(n,w,y) is an asymptotic simplified approximation
of an element of the SDGF (or related quantity) and J, stands
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Fig. 7. Dispersion curves for a number of modes of a boxed multilayer CPW
structure. Dimensions: @ = 15 mm; h; = 0.635 mm, £,1 = 2.33; ho = 0.06
mm; .0 = 10.5: kg3 = 15 mm; 6,3 = 1; w = s = 0.254 mm.

for the first kind Bessel function of integer order p. o and ¢
are functions of the ratio between the strip (or slot) width and
the box width. The difference between the actual series and its
asymptotic expression vanishes very quickly if F2° is properly
defined. In our case we obtain 1/n® behavior by using:

fas — gl(wﬂﬁ)/) + 93((*‘]17)
n n3

(A2)

where g; 3 are known in closed form [21] (also in [23] for
the microstrip case including the special feature of very thin
layers).

Our problem reduces to compute A%° in (Al) very effi-
ciently. The part of AZ° corresponding to the first second
hand term in (A2) is associated to the quasistatic limit of the
problem, and it has been quasianalytically computed in [24]
and [25]. The method in [24] and [25] consists in transforming
the numerical series in a convolution/inner product integral in
the spatial domain which is almost analytically evaluated. For
the part involving the factor 1/n* we have used a similar idea
[21]. This method is better than the one used in [23] while
still keeping an important feature also mentioned in [23]: the
asymptotic part of the computations is carried out just once for
a given structure (a similar property was also used in [11]).
This fact is very important because the root searching task
requires multiple evaluations of the Galerkin matrix. The final
result from all this algebra is that the number of spectral terms
to be retained in series summation is drastically reduced: no
more than a few units or tens of spectral terms are necessary
for microstrip calculations (fewer terms are typically required
for finline and CPW). Note that thousands of terms may be
required if the asymptotic method is not applied (see, for
instance, [17]). This makes the efficiency of SDA similar to
SIE while keeping the generality of SDA. In the context of
this work, there is another reason for doing this analytical
processing of the spectral series apart from computational
speed: the reaction terms in the Galerkin matrix involving high
order Chebyshev polynomials have to be accurately computed
when very high order modes are treated in order to keep
mode orthogonality. We have not either detected spurious
solutions with our method. For a more detailed study of the
technique sketched in this Appendix, the reader is referred
to [21].
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