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Abstract-This work reports an efficient and systematic proce-

dure to obtain the complete modal spectrum of multilayer boxed
planar lines. The complex propagation constants are obtained by
computing the zeros of a properly built analytic c(omplex function.

This function is the product of two factors, One of them is the

determinant function provided by the spectral domain-Galerkln
analysis (SDA). The other factor is a fnnction which cancels out
the poles of the former factor without introducing additional
poles nor zeros. The elimination of the poles overcomes numer-
ical difficulties usually found in the zero searching process. In
addition, powerful zero—searching integral techniques can be
applied without problems. The numerical asp(ects involved in

the computation of the spectral series are considered to speed

up the computations. The features of an arbitrary number of

propagating, evanescent, backward or complex modes of three

important boxed structures (microstrip, finline, and coplanar

waveguide) can be systematically studied with our method.

I. INTRODUCTION

T HE ANALYSIS OF discontinuities between boxed planar

lines has been carried out by means of a wide variety

of techniques. Among them, modal solution procedures are

frequently chosen owing to a number of advantageous features

discussed in the literature on this topic, e.g., [ 1]–[5]. In this

context, microstrip, finline or CPW normal modes are likely

the best choice as the basis for the modal expansion [6].

Nevertheless, tens of modes may be required to analyze a

typical discontinuity [3], [5]. Consequently, it is convenient

to develop a method to compute the propagation constants of

an eventually large number of modes. The method should be

reliable (avoiding missing of solutions), accurate (preserving

mode orthogonality) and quick (saving CPU time). This paper

tries to give a response to those requirements within the frame

of the SDA.

The techniques used to analyze uniform planar lines usually

lead to an homogeneous matrix equation that only can be

solved for certain particular values (eigenvalues) of a parame-

ter (the unknown propagation constant). These eigenvalues are

complex solutions of a nonlinear equation which is obtained

enforcing the determinant of the system matrix to vanish.
Accuracy and reliability mainly depend on two factors: (1)

accurate evaluation of the system matrix and (2) use of a
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Fig, 1. Cross-sectIon of the boxed bnes in layered medium studied m this

papec (a) microstrip, (b) tinline, and (c) coplanar waveguide (CPW). Dashed
hrre stands for electrlclmagnetlc wall. Amsotroplc materials can be considered.

suitable method to solve the nonlinear dispersion equation.

The numerical solution of this equation is difficult due to

the existence of steep gradients and poles (often very close

to the desired solution), In spite of its importance, only

a few attempts of solving this problem can be found in

the literature. In this way, the mode spectrum of finline

[7], [8] and microstrip [4], [9] have been computed using
the singular integral equation technique (SIE); the transverse

resonance diffraction (TRD) method is applied in [10] to the

unilateral finline. Particular interest deserves the space domain

formulation reported in [11] to analyze a lossless single layer

microstrip line. The zero-search problem is emphasized in

those papers and treated using some a priori knowledge about

pole location. Unfortunately, this is only feasible for particular

situations. More recently, the singular value decomposition

(SVD) method has been proposed in [12]—and used for the

analysis of the quasi-TEM modes of multistrip structures in

[ 13]—as a useful technique to relax the root location problem.
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This paper offers an alternative method presenting some

advantages over theabove mentioned procedures. We propose

a general technique (a first step on which was reported in [14])

to deal with the computation of the modal spectrum of the

generalized boxed planar lines in Fig, 1. Our method makes

use of the well-established SDA formulation. Some authors

sustain that SDA is suitable for the first few modes but not

for higher order modes (e.g., [2], [3], [7], [8]). We have found

that the possible drawbacks of the SDA are likely related to

numerical inaccuracy when a relatively high number of basis

functions is required and the lack of a suitable zero searching

procedure.

We have developed a technique that improves accuracy and

numerical stability, although the stress is here put on the

development of a systematic strategy to find all the desired

modes avoiding missing of solutions. This strategy is based

on the cancellation of the poles of the characteristic dispersion

equation. Thus, the dispersion relation is given in terms of the

zeros of an analytic complex function (i.e., a function fulfilling

the Cauchy–Riemman conditions). Note that, even though

the method in [12] incorporates the important advantage of

working with a function having no poles, that function is not

analytic. On the contrary, our proposal takes advantage of

the analyticity in the zero searching task. On the other hand,

since our technique requires (such as many other methods) to

evaluate the dispersion function many times, special attention

has been paid to avoid redundant computation of the spectral

series (most of the computing effort is concentrated in the

first evaluation of the Galerkin matrix). This reduction of

computation work and the aforementioned analyticity of the

dispersion equation have been combined to implement a

reliable, fast and systematic computer code for the analysis

of the modal spectrum of the lines in Fig. 1.

II. PROBLEM STATEMENT

The analysis of the structures in Fig. 1 is conveniently

carried out by means of the SDA. The spectral dyadic Green’s

function (SDGF), G(a~, v, w) – an is the Fourier variable,

T = ,6 – .I@ the unknown complex propagation constant and
w the angular frequency –, may be computed using the so-

called EBM method [15], [16] (EBM allows us to deal with a

complex linear layered medium), Once the SDGF is known, an

integral equation is written either for the strip surface current

(microstrip case) or for the slot electric field (finline and CPW

cases). This spectral integral equation is solved via Galerkin’s

method, which leads to an homogeneous equations system. Its

non trivial solution condition

det[A(-y, w) ] = O (1)

stands for the characteristic equation whose complex roots

are the desired propagation constants (vi; z = 1,. . !, m).

Two points concerning the solution of (1) should be now

considered:

A. Proper Computation of [A(v, u)]

Computational efficiency is essential at this step of the

analysis because it determines CPU time and accuracy. First

of all we have to use adequate basis functions. We use first

and second kind Chebyshev polynomials weighted with the

Meixner edge condition [15], since this set of functions is

specially suitable for the analysis of planar lines. Unfortu-

nately, the spread spectrum of these functions yields very

slowly convergent series. A huge number of Fourier terms

could have to be retained to avoid serious truncation errors

[17]. Moreover, the truncated spectral representation does

not account for the edge singularity; therefore, the power

of the weighted basis functions set can be only exploited

if a suitable summation technique is provided. The problem

becomes more noticeable for high order modes and very

narrow strips/slots [18]. In this paper we use acceleration

techniques that substantially relax all these inconveniences.

Our technique has the additional virtue of avoiding redundant

computations in the zero search process. A brief outline of the

method can be found in the Appendix.

B. Suitable Scheme for Complex Roots Searching

The solution of (1) implies to seek for the zeros of a com-

plex function of complex variable I?(7, u) = det[A(7, u)],

for each fixed frequency value. F(y, w) is not analytic but

meromo~hic. Its poles arise either from the poles of the

SDGF (microstrip), or from the poles of its inverse (finline

and CPW). The presence of poles always makes difficult the

zero searching task. Poles and zeros may be so close each

other that numerical difficulties arise even if pole locations are

known in advance, as in [11]. Therefore, we have developed

an approach completely different from the one used in [7],

[ 10]-[12]. Our strategy consists in obtaining the characteristic

function of the nonstandard eigenvalue problem (1) in the

form of a complex function which is analytic in the traced

region. This function has smooth behavior so making easy the

application of differential zero-searching algorithms (Muller

or Davidenko’s methods). However, we have exploited the

advantages arising from the analyticity of that function since

systematic integral methods based on well-known complex

variable theorems can be then applied. We have implemented

an improved version of the Delves–Lynnes [19] technique to

obtain the number and location of all the zeros within a given

region, The knowledge of the number of roots is useful so as to

explore the complex plane systematically, so avoiding missing

of solutions and redundancy. Although this technique gives

very accurate results, additional accuracy is obtained—without

increasing too much the CPU time—if these results are used

as initial guesses of an iterative Muller algorithm.

III. DISPERSION FUNCTION AS AN

ANALYTIC COMPLEX FUNCTION

We have already discussed the advisability of formulating

the dispersion problem in terms of the zeros of an analytic

complex function. In this section we explain how to built this

function. Let us begin with the microstrip configuration. In

this case, (1) has the same poles than the SDGF. They are

the propagation constants of the modes supported by the inho-

mogeneous waveguide remaining when the strip is removed,

namely, the background waveguide (see Fig. 2(a)): only when
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the SDGF has a pole we can have hnite nonvanishing field in

the absence of printed current. Although direct search for these

poles is possible [11], this task could present difficulties when

applied to a complex multilayer structure or when poles and

zeros are in close proximity. So we have followed a different

method that overcomes numerical problems. In [20] it was

reported a procedure to compute the propagation constants

of a laterally open waveguide with a bianisotropic layered

medium in terms of the zeros of an unbounded analytic

complex function. We follow here the guidelines contained

in [20] but adapting the maths to account for the metallic

enclosure so as to get an analytic characteristic equation for the

eigenmodes of the background waveguide. Let Ek (am) and

J~ (an) be the Fourier transforms of the tangential electric

field and surface current at the kth interface (a dependence

on the Fourier variable an will be assumed henceforth for all

the physical quantities). Using notation and formulas in [15]

and [16] we can write two useful relationships between those

quantities at the top, IV, and bottom, O, interfaces (see Fig. 1)

EN = [rn(y, f-d)] . JO; (g = 0 e.w.) (2a)

EN = [rn(v, bJ)] . EO; (g = 0 m.w.) (2b)

(e.w. = electric wall; m.w. = magnetic wall), where

[rn] = ItipOIA]N,l . [g]~~; (y= O e.w.) (3a)

[r~] = -~[fWV,I ~ [d~l [ho; (Y= o m.w.) (3b)

and

N–1

[A]N,I = (-l) N-l ~ {[g];:l,N-1+1~[L] N-,}. (4)

1=1

The 2 x 2 matrix functions [L] ~ in (4) are computed using the

following recurrence algorithm:

[Ll~ = [g]~,~ - [g]~,~-1 ~[L]~!l ~[g]~-1,~ (5)

k=2,. o, N-l

which has to be initialized with the expressions

[L]l = [g],,,; (y= O e.w.) (6a)

[LII = [dl.1 - Z[dl.o ~ [d~i [g]o,l; (Y= O m.w.). (6b)

The 2 x 2 matrix functions [g]Z,j in (3)–(6) are known in

closed form and are given in [15] and [16]. It should be

emphasized that the 2 x 2 [I’. ] matrices in (2) and the SDGF

are simultaneously computed. Therefore, the evaluation of

[1’~] requires negligible additional computation.
Now, the presence of the upper conducting plate is taken

into account by imposing Efv = 0. Then, the nontrivial

solution condition for (2a) or (2b)

det[I’n(~, w)] = O (n=o,l,2,...) (7)

gives the propagation constants of the modes in the inhomoge-

neous background waveguide. For our purpose, an important

feature of (7) is that det [I’m (-y, u)] does not have a}zy poles

(a) (b)

Fig. 2. Structures whose propagation constants are the poles of the dispersion
characteristic equation (a) for the zmcrostrip line and (b) for finlme and CPW.

in the y complex plane [20]. We w~l take advantage of

this property later but, before going on, let us discuss the

finline/CPW case. For any of these structures, the kernel of

the integral equation for the slot electric field is the inverse of

the SDGF, i.e., [G(an, ~, w) ]–l. The singularities in (1) now

arise from the modes corresponding to the two waveguides

resulting from the substitution of the printed Mth interface by

a continuous conducting plate (see Fig. 2(b)). We can write

for the lower (L) and upper (U) waveguides

where [I’:] and [I’:] are obtained by following the same steps

reported for the microstrip case. If we redefine

condition (7) still determines the propagation constants in this

case.

The doubly infinite set of solutions of (7) is also the set of

poles of the determinant function (1). In other words, we have

built up a family of functions

whose zeros are the poles of F’(-y, w) = det [A(T, u)]. These

functions can be now used to eliminate the poles of F(v, w )

without introducing additional poles or roots. Thus, the dis-

persion relation for the boxed transmission line—which was

initially given in terms of the meromo~hic expression ( 1)—is

now more conveniently expressed by means of the following

analytic characteristic equation:

co

det [A(7, w)] . ~ Fn(T, w) = O (9)

where, as will be shown later, just a few factors of the infinite

product are required in practice.

IV. SYSTEMATIC SEARCH FOR THE ZERO’S

Equation (9) turns out to be a rather formal expression, since

infinite factors should be retained so as to built an analytic

function in the entire complex plane (except at infinity).

However, (9) has to be analytic only in that region of the

complex plane to be traced by the zero-searching algorithm.
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Therefore only a few values of n are usually required to

generate a function

7Z=0

which is analytic in the region of interest. NV in (10) is chosen

in such a way that, for a given operation frequency, w, and box

width, a, all the poles in the search region are removed (i.e.,

1,62\ < (N~m/a)2 – G-k;, where e. stands for the modulus of

the highest relative dielectric constant [7]).

Since H(T, w) is analytic in the working region, R, of the

complex plane, the integral method refereed as C) in [19]

can be used to search for its zeros. We have chosen this

method instead of B) in [19] because it has been found that

the numerical evaluation of the derivative of H(T, U) yields

much better performance than the scheme proposed in B).

This technique allows systematic exploration of the region

R in order to detect the number of zeros in it. We have

found this method better than other alternatives, specially for

regions with several and/or very close roots. Complex plane

integrations are carried out along circular paths by means of

high order Gauss-Legendre quadrature (20+0 points). This

means that H(T, w) has to be evaluated many times before

attaining the solution. Nevertheless, since several zeros may

be computed with each set of values of H(v, w), the total

number of evaluations of this function might be even smaller

than those required when iterative methods are used, Thus,

with similar computational effort, one gets more reliability and

systematicity in the evaluation of the propagation constants.

In addition, thanks to the use of the asymptotic techniques

commented in the Appendix, the main part of the numerical

effort is concentrated in the first evaluation of H(v, w): further

evaluations do not increase too much the overall CPU time.

V. DISCUSSION AND RESULTS

The theory reported in previous sections is the basis for

a set of computer Fortran codes that analyze the eigenmode

spectrum of the structures in Fig. 1. (they include a variety

of versions of the microstrip, finline, and CPW, including

symmetrically coupled geometries and anisotropic uni- and

biaxial substrates). Several aspects of the convergence and

general performance of the technique have been exhaustively

investigated (some comments about this are in the Appendix).

However, in this paper we are more interested in posing and

solving an adequate dispersion equation than in the numerical

details involved in the generation of the Galerkin matrix

(which are left for a next paper), although it is obvious that

the latter problem had to be properly solved before going on.

We want only to say than a highly accurate and efficient code

has been developed which is able to deal with many basis

functions while keeping numerical stability.

In Fig. 3 we have plotted the standard mesomorphic char-

acteristic function in (1), $’(T, w), and the modified analytic

characteristic function in (10), ~(~, w) for a range of values

of (fl/ko )2. For simplicity, we have restricted the picture to

the real axis (where the functions are real). Nevertheless, the
conclusions obtained from its examination also apply to the

0

I ‘ !,
I

I
-- F (Y)

— H (I’) I

0,5 0.6 0,7 0.8

(@%)2

Fig. 3. Typical plots of F(7, O) (meromo~hic), IT(-y, U) (analytic) dis-

persion functions. These plots correspond to a centered boxed microstrip on

isotropic snbstrate (E. = 8.875) having the following dimensions: h = 1.27

mm, a = b = 12.7 mm, and Freq. = 28 GHz (this structure has been

analyzed in [1 l]).

complex case. Fig. 3 shows how both functions have the

same zeros, but F’(T, w) has also poles, some of which are

extremely close to the zeros (they could even match). This

latter fact seriously complicates—or even precludes—the root

identification with conventional methods, whereas does not

affect our formulation.

Our results have been checked against many published data

computed by means of SDA and other techniques. We have

found excellent agreement with most of these results within the

accuracy of usual graphical representations. However, we have

found that missing of modes is very common. For instance, in

Fig. 4 we plot the propagating and a few evanescent modes

of a unilateral finline. Modes having odd (E-modes) and

even (M-modes) symmetry with respect to the middle plane

normal to the fin interface have been separated. The figure

shows our results and results from [2] and [8]. This figure is

interesting because the authors in [8] express an opinion about

the suitability of the SDA to account for higher order modes:

although SDA is a useful and well-founded method to cleal

with planar structures, it is not adequate for reliable and quick

computation of higher order modes; SIE technique would

be a better alternative. This opinion has been sustained by

several authors elsewhere [2], [3], [7], [8]. This conclusion is

supported in [8] by comparing SIE data with the results in [2]

(SDA) for a finline structure. Following these authors, missing

of solutions and relatively high computational cost would be

drawbacks associated to SDA. However, Fig. 4 clearly shows

that we find all the modes reported in [8] and a few more not

reported in that paper (including one complex M-type mode).

In addition, the use of the asymptotic techniques commented

in the Appendix makes the SDA a very efficient method from

the perspective of computational cost (of the same order tlhan

the very efficient SIE technique). An illustrative comparison

has been carried out against the numerical values reported

by Omar et al. [7] (SIE) for a large number of E-modes

of a unilateral finline. Table I shows our data and the data

in that paper. Apart from excellent agreement, it can be

seen that we find three modes not reported in [7]. The IIost

modes are some of those having propagation constants very

close to waveguide modes (singularities in the conventional

formulation), as shown at the bottom of Table I. This closeness

is likely the reason for missing of solutions in [7] (since the

analyticahumerical analysis seems to be very careful). This
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Fig. 4. Dispersion curves of several modes of a unilateral finline in
WIG28 waveguide (L? for propagating modes and cr for evanescent ones).

srl =E,3 = 1; ~1 = h3 = 3.429 uun; e,z = 2.22; h = 0.254 mm; w=
1 m.(a) E-modes, i.e., modes having anelectiic wall inthe fiddle plane;

(b) Al-modes, i.e., those having a magnetic wall. Solid lines: our results;
symbols: data in [2] and [8]. - -

Rg. 5. Plot

-jl,85 -jl,90 ji,95 j2;j2 .35 -j2.40 ;2,45 .j2,50

“f

of ~(v) (gray line) and H(y) (black line) for the structure
whose modes are given ii Table I. Even an’d odd symmetries with respect to

the middle plane of each solution is noted.

conclusion is confirmed in Fig. 5. This figure shows both the

mesomorphic and the analytic dispersion functions for the case

considered in Table I: Numerical problems associated to the

use of the mesomorphic function are clearly expected.

We have also made similar comparisons for the microstrip

line analyzed in [4] with SIE. Some numerical data reported in

that paper are compared with our data in Table II. Once again

agreement is very good, but we find some modes not reported

in [4] at 20 GHz. Fig. 6 shows the dispersion behavior of

the modes in Table II. Circles correspond to the propagation

constants not reported in [4]: It is clear that they are not

spurious solutions. In our opinion, Tables I and II and Figs.

4–6 illustrate that, if properly implemented, SDA is a very

El(!)
(b)

m

TABLE I
PROPAGATIONCONSTANTSOF THE E-MODES

OF THE UNILATERAL FINLINE STUDIED IN [1]

1 2 3 4 5 6 7 I

0.6824 -j0,6063 j0,7444 -jl.5953 -jl,6487 .11,6798 -j 1

0.6820 -jO.6067 -jO.7448 .jl.5955 .jl,6489 .jl.btioo .jl

8 (*) 9 10 (*) 11 12 13

I(a) I -jl.888 l-jl.9918 I -j2.466 l-j2.4746 l-j2.5486 -j2.7066 l-j3,0732

-;2.70701-;3.0735(b) —“ -jl.9922 —- -j2.4747 -j2,5491 ,.

16 (*)

(!) -j3!3!’135 -j3.2064 .j31;370 -j3~646 .j31;763 -j32;967 .;;.5:;1

(b) -j3.1136 -j3.2065 -j3,2372 -j3.3648 .j3.4763 -j3.4969 —

(!) -j3f056 -j3t641 .j3:124 -;;./;;6 .j32:307 -j3:654 -j42;196
(b) -j3.6057 -j3.6648 .j3,8127 -j3,8787 .j3.9308 -j3.9658 -j4.0196

B 29 30

(a) -j4.0760 -j4,2311 -j4%468 -j4?637 .j433

(b) -j4.0770 -j4,2314 -j4,3475 -j4,3637 -j4. ,.Lv , I I
Rl=a

Finline (*) 1.jl.8884121-j2 .466629 ~-j3.2064301-j3 .596131 \-j3.878616

Waveguide l-jl.888413 I-j2.466633 I-j3.206437 l-j3.596134 l-j3.878553
“4 “=2 “=’2 “=4 “=2

WR-28 Waveguide: E.l = C,3 = 1;hl = h3 = 3.429 mm, erz = 2.22; hz =

0.254 mm; w = 0.2 mm; frequency = 30 GHz. (a) Our results, (b) Results in [1]. (*)
Propagation constants very close to waveguide modes (see also Fig. 5) such as shown in

the bottom part of the table (n is the order of the spatiat harmonic in (7)).

0.8 + - Num.resultsin[4]

1.2 +- I \ r

o 5 10 15 20
Freq (GHz)

Fig, 6. Dispersion curves for the boxed microstrip (w = 0.953 mm) whose
first few modes (at 10 and 20 GHz) are given in Table II. Circles represent

modes at 20 GHz not reported in [4] (one evanescent mode and one complex
mode).

powerful tool for the analysis of planar structures also when

very high order modes are traced. More examples and an

exhaustive study of the performance of our formulation-in

contrast with the conventional one—for a wide range of

situations (with particular emphasis on the identification of

complex modes) can be found in [21].

We would like to finish this section with an example of CPW

structure. We have chosen one of the multilayer configurations

proposed by Liu and Itoh in [22] to avoid leakage in conductor
backed coplanar waveguides. Fig. 7 shows the mode spectrum

for that structure when enclosed in a rectangular waveguide.

VI. CONCLUSION

In this paper we have proposed a technique to overcome

some difficulties arising when the conventional SDA is used
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TABLE II

PROPAGATIONCONSTANTS, ~, OF ABOXED MICROSTRIP [4]

Frequency= 10GHz

W = 0,953 mm W = 4,572 mm

p (mm-’) o (mm-’)

m (a) (b) (a) (b)

1 0.2885 02884 03023 03021

2 -jO.2484 -jO.2483 -jO.2470 -j0,2469

3 -JO.5547 -jO.5547 -jO.5508 -j0,5508

4 -jO.5887 -jO.5886 -jO.6027 -j0,6027

5 -jO 9657 -jO 9652 -jO 9645 -jO.9640

6 -jl 0208 -jl 0209 -jO 9773 -jO 9773

7 + O00450 + O 00449 -jl 0733 -jl,0731

8 T jl.0852 T jl.0849 -J1.1027 -jl.1023

9 -J1.1078 -J1.1075 -jl 1237 -jl.1236

Frequency = 20 GHz

W = 0,953 mm W=4572mm

8 (mm-’) 6 (mm-’)

m (aj ‘ lb) (a) ‘ (i))

1 0,5828 05825 0.6136 0.6132

2 0,2781 0.2778 0.2754 0.2751

3 -JO 4126 -JO 4127 -jO 4033 -jO 4032

4 -jo 4557 -jO 4558 -jO.4801 -jO.4802

5 -jO 8884 -jO 8880 -jO 8627 -jO.8626

6 -jO.9512 — -Jo 8989 —

7 * 0.00915 — -30,9945 —

8 + jl 0156 — ‘J1 0391 —

9 -J 1.0456 -]1 0450 -jl.0631 .jl 0631

Dlmenslons: a = 9,52 mm; hl = O635 mm, &.l = 2.32; hz = 5715 mm: er2 =
1 (a) Our results. (b) Results nr [4] Modes 7 and 8 for w = 0953 mm are the real (7)
and Imagmay (8) parts of a pam of complex modes.

to calculate the propagations constants of higher order modes

of planar transmission lines. The limitation of the SDA to

the computation of the first few modes has been removed by

means of two concurrent improvements: (1) drastic enhance-

ment of the numerical performance of SDA through a suitable

preprocessing of the spectral series and (2) formulation of

the dispersion equation in terms of an analytic complex

characteristic function. The final result is a set of quick,

accurate and reliable computer codes to obtain the complete

modal spectrum of the structures shown in Fig. 1. These

programs are potentially useful for the modal analysis of

discontinuities in those structures.

APPENDIX

A. Numerical Treatment of the Galerkin Matrix

Each entry of the SDA Galerkin’s matrix, [A(T, u)], is an

infinite, slowly convergent series involving the product of the

Fourier transforms of two basis functions and the appropriate

element of the SDGF. Drastic acceleration is obtained by

extracting out and analytically adding their asymptotic limit

behavior [23], With our choice of basis functions all the

elements of [A] have the same asymptotic functional limit,

A~q, so we only have to deal with series of the following

type:

where .Fas(n, w, -y) is an asymptotic simplified approximation

of an element of the SDGF (or related quantity) and Jp stands
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-12
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Fig. 7. Dispersion curves for a number of modes of a boxed multilayer CPW

structure. Dimensions: a = 15 mm; hl = 0.635 mm, ST1 = 2.33; hz = 0.06
mm, z,2 = 10.5: 1z3 = 15 mm ers = 1; w = 5 = 0.254 m.

for the first kind Bessel function of integer order p, a and c

are functions of the ratio between the strip (or slot) width and

the box width. The difference between the actual series and its

asymptotic expression vanishes very quickly if 7’s is properly

defined. In our case we obtain 1/n5 behavior by using:

$-as = !71(W$‘-Y)+ 93(~, 7)
n n3

(A2)

where g1,3 are known in closed form [21] (also in [23] for

the microstrip case including the special feature of very thin

layers).

Our problem reduces to compute A:q in (Al) very effi-

ciently. The part of A~q corresponding to the first second

hand term in (A2) is associated to the quasistatic limit of the

problem, and it has been quasianalytically computed in [24]

and [25]. The method in [24] and [25] consists in transforming

the numerical series in a convolution/inner product integral in

the spatial domain which is almost analytically evaluated, For

the part involving the factor 1/n3 we have used a similar idea

[21]. This method is better than the one used in [23] while

still keeping an important feature also mentioned in [23]: the

asymptotic part of the computations is carried out just once for

a given structure (a similar property was also used in [11]).

This fact is very important because the root searching task

requires multiple evaluations of the Galerkin matrix. The final

result from all this algebra is that the number of spectral terms

to be retained in series summation is drastically reduced: no

more than a few units or tens of spectral terms are necessary

for microstrip calculations (fewer terms are typically required

for finline and CPW). Note that thousands of terms may be

required if the asymptotic method is not applied (see, for

instance, [17]). This makes the efficiency of SDA similar to

SIE while keeping the generality of SDA. In the context of

this work, there is another reason for doing this analytical

processing of the spectral series apart from computational

speed: the reaction terms in the Galerkin matrix involving high
order Chebyshev polynomials have to be accurately computed

when very high order modes are treated in order to keep

mode orthogonality. We have not either detected spurious

solutions with our method. For a more detailed study of the

technique sketched in this Appendix, the reader is referred

to [21].
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